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Abstract

The electronic structures of the molecules nitroamine and

nltrosasine have been investigated by using ab initio molecular

orbital methods. Double-zeta basis sets have been used. Both planar

and non-planar geometries have been considered and complete geometry

optimization* have been performed. The results obtained are compared

with previous semi-empirical and ab initio studies.
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1. Introduction

litramine and nitrosamine compounds are of significant interest (Feuer

et a1.1969) due to their extensive use as essential ingredients in

propellants and primary and secondary explosives. X-ray crystallographic

studies of these compounds in conjunction with microwave and electron

diffraction studies indicate that these molecules exhibit a number of

interesting geometrical features. For nitramine, apart from the study by

Beavers et al. (1957) the most exhaustive study is that of Tyler (1963)

where the non-planarity of nitramine is shown by the direct observation of the NH2

inversion. However, there continue to be different (Gropen and Skancke 1971.

Cimiraglia 1978) studies on the contrary, and the fact that

diuethyl-nitranine is planar (Stolevik and Rademacher 1967) illustrates

the necessity of further theoretical and experimental work for the

accurate determination of the electronic structures.

The aim of the present work is, therefore, to study the optimized

geometries of nitramine and nitrosamine in both planar and non-planar

form, at the Hartree-Fock level. The non-planar form of nitramine will

be taken from the study of Tyler and the planar forms of both the

molecules will be taken from the study of Gropen et al (1971). Our

results will be compared with a number of semi-empirical studies

(Farminer and Webb 1975, Harris 1973, White, Colton, Lee and Rabalais

1975).
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2. Details of Calculations

As is well known, the ab initio molecular-orbital method predicts

geometries with surprising accuracy, in spite of the neglect of

correlation energy. However, there appears to be only two ab initio

studies in the literature for these molecules. The study by Gropen

et al. (1971) considered only planar geometry and no geometry

optimization was performed. The study by Duke (1978) used minimum

basis sets and only partial geometry optimization was performed. The

502 and NH2 geometries were kept fixed; only the N-N distance and the

out-of-plane angle of the NH2 group were varied.

To improve these results, we have used a double-zeta basis set.

namely the 3-21G basis set (Binkley. Pople and Hehre 1980). This basis

consists of an s-type inner shell function with 3 Gaussians, an inner

set of valence s- and p- type functions with 2 Gaussians and another

outer sp set with I Gaussian. This basis should give reasonable bond

angles and bond lengths, which are known to be overestimated in a

minimal basis-set study. Geometry optimization was performed by using

the method of Schlegel (1982). This optimization algorithm evaluates

and utilizes the gradients each time the energy is computed and the

second derivative matrix is updated. This is followed by a one-

dimensional search using the second derivative matrix.
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3. Results and Discussion

The tresults obtained are presented in Tables 1 - 12.

In Tables I and 2, the non-planar experimental geometries of

nitramine and the optimized geometry at the Hartree-Fock 3-21G level

are presented. The N-N distance obtained, 1.472 A, is, not sur-

prisingly, too large. This is to be compared with the N-N distance,

1.354 A, obtained at planar geometry. Obviously, there is a strong

tendency to planarity at shorter N-N distances. MINDO predicts

nitramine to be a planar molecule. MINDO2 gives 1.21 A for N-N

distance, while MINDO3 gives 1.29 A.

In tables 3 and 5. we present the calculated orbital energies for

nitramine in non-planar and planar forms. The nature of each orbital

is indicated in terms of w-bonds and more or less localized a bonds.

The four lowest occupied orbitals are the inner shell s-orbitals on the

four heavy atoms. This feature is also supported by the NINDO2 and

MINDO3 orbital energies. The photoelectron spectrum of nitramine

indicates that the two highest occupied levels are of w symmetry. Our

calculations indicate that while this is true for planar nitramine, in

non-planar nitramine, only the highest occupied level is of v symmetry.

Also, in the study by Gropen et al.. one lone pair is found between the

two a (N-H) orbitals and the lowest i orbital was found to be almost

degenerate with the highest of these. We do not observe such

degeneracy and thus it seems unlikely that the lowest w orbital is

almost completely delocalized as has been claimed in the literature.
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In Tables 6 and 7. the optimized planar geometry and the orbital

energies for nitrosaine are presented. Here the three lowest orbitals

are the inner shell a-orbitals on the three heavy atoms. A study of

population analysis indicate complete agreement with the conclusions

reached by Gropen et al.: the three highest occupied a orbitals are

responsible for the lone pairs on nitrogen and oxygen. Also, the two

lowest. 5a' and 4a'. are mainly responsible for the v (N-0) and a (N-N)

bonds.

Table 8 contains the results of the total energies, before and

after optimization. Since nitramine in planar form has clearly lower

energy than nitranine in non-planar form and since experimental study

by Tyler (1963) indicate results on the contrary, further experimental

research in this direction could be very fruitful.

Table 9. 10. and 11 present the results of gross atomic population

study. In the non-planar form, the nitro nitrogen atom is positively

charged, namely +0.51 while the amine nitrogen atom is negatively

charged, namely -0.51. This is from Mulliken population analysis.

Results from Lowdin population analysis indicate that the nitro

nitrogen atom is positively charged, +0.46 but the amine nitrogen is

strongly negatively charged, namely -0.71. The same qualitative trends

are predicted from the CNDO charges which are in reasonable agreement

with the INDO charges reported by White (1975). It is interesting to

note that for nitramine in planar form, the conclusions are completely

opposite. We note as a sideline that MINDO methods do not work very

well in the study of the population charges of these molecules,

probably because these molecules are very different from those used in
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the parausterisatlon of such methods. It is also to be remembered that

the predicted populations in any ab initio calculation are very

sensitive to the choice of basis set.

Finally in Table 12, we compare our results for the dipole moment

of nitranine with the available results in the literature. In the

non-planar form, our value for the dipole moment is the closest to the

experimental value. However, since total energy is considered more

reliable in ab initio method, nitramine in planar form still appears to

be more stable theoretically. Again. further experimental work would

be very welcome.
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TABLE 1

Experimental bond length# and bond angles for nitrauine (lengths in.nm)

Deevers and Tyler.(1963)

Trotuan-Dickinson (1957)

X-ray M~icrowave

N-H 0.1005 t 0.001

N-H 0.140 0.1427 ± 0.0002

N-0 0.118 0.1206 (assumed)

0ON0 13008' ± 15'

HNH 115*11' ± r

out of plane 51047' ± 10

I
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TABLE 2

Opti ized Ion-planar Geometry of Nitramine Coordinates are in Angstcoms.

Atom x y z

N(1) 0.0145 -0.0021 0.0

N(2) 1.4845 0.0754 0.0

0(1) -0.5963 1.0803 0.0

0(2) -0.4676 -1.1209 0.0

H() 1.7172 0.6055 0.8295

H(2) 1.7172 0.6055 -0.8295

I



TABLE 3

Orbital energies for nitroaine in a. u.

Orbital Orbital energy Nature of Orbital

I (la') -20.531190 Is

2 (2a') -20.511603 Is

3 (3a') -15.810688 Is

4 (4a') -15.574496 1.

5 (5a') - 1.631171. a

6 (6a') - 1.424051 0

7 (7a') - 1.261226 a

8 (8a') - 0.905639 a

9 (Ia'') - 0.786352

10 (9a') - 0.775029 a

11 (10a') - 0.723289 0

12 (2a'') - 0.665820

13 (11a') - 0;538030a

14 (12a') - 0.499191

15 (13a') - 0.467081a

16 (3a"') - 0.443007
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TABLE 4

Initial and Optimized Planar Genometries of Nitramin. Coordinates are in

Angstroms.

Atom x nYin xopt Yopt

NO1) 0.0 0.0 0.0 -0.0065

N(2) 0.0 1.3816 0.0 1.3476

001) 1.0926 1.8911 1.1170 1.9019

0(2) -1.0926 1.8911 -1.1170 1.9019

H(1) 0.8474 -0.5398 0.8937 -0.4426

H(2) -0.8474 -0.5398 -0.8937 -0.4426
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TABLE 5

Optimized Orbital Energies for nitramine in planar form in au.

Orbital Orbital energy Mature of Orbital

1 (Wa) -20.495737 Is

2 (2a') -20.495366 Is

3 (3a') -15.814295 i

4 (4a') -15.580724 1.

5 (5a') - 1.617184

6 (6a') - 1.401714

7 (7a') - 1.282449

8 (8a') - 0.924754 a

9 (9a') - 0.799121

10 (l0a') - 0.769095

11 (la'') - 0.746520

12 (ha') - 0.671962

13 (12a') - 0.497412

14 (13a') - 0.482884 0

15 (2a'') - 0.472506

16 (3a") - 0.437638 1
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TABU1 6

Initial and Optimized Planar Geometries of Nitrosanine. Coordinateg are in

Angstrom.

Atom Xi Yi n opt Yopt

NO() 0.0 0.0 0.0060 -0.0062

N(2) 0.0 1.3436 -0.0164 1.3413

0(0) 1.0926 1.8531 1.1001 1.8513

80l) 0.8474 -0.5398 0.8896 -0.4737

H(2) -0.8474 -0.5398 -0.8690 -0.4746



TABLE 7

optimizied Orbital Energies for nitrosasine in a. u.

Orbital Orbital Energy Nature of Orbital

1 (la') -20.489050 Is

2 (2a') -15.659971 is

3 (3a') -15.546273 Is

4 (4a') - 1.523223

5 (5a') - 1.248262

6 (6a') - 0.915149

7 (7a') - 0.7706356

8 (Sa') - 0.696589a

9 (1a'') - 0.623923 v

10 (9a') - 0.5865976

11 (2a'") - 0.424889

12 (10a') - 0.414389
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TABLE S

Total electronic energies. Values in a. U.

Molecule Geometry Total Energy

Nitrarnine Non-Planer (kxpt.) -258.004191

NOn-Planar (Opt.) -258.118307

litramine Planar (Theo.) -258.128685

Planar (opt.) -258.137938

litrosamine Planar (Theo.) -183. 764893

Planar (opt.) -183.768075
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TABLE 9

Grosns atomic population for nitramin. in non-planar geomtry.

Atom Total Charge Total Charge

(Nulliken) (Lowdin)

NO1) 6.49297 6.54222

N(2) 7.51055 7.29311

001) 8.39306 8.33289

0(2) 8.33329 8.24663

H1(I) 0.63507 0.79258

H1(2) 0.63507 0.79258

1111 0 110 ,1 A M4III11 111'1
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TABILE 10

Gross atomic population for nitrasine in planar geometry.

Atom Total Charge Total Charge

(Julliken) (Lovdin)

N(1) 7.55396 7.29915

1(2) 6.45242 6.48963

0(1) 8.40378 8.34106

0(2) 8.40378 8.34106

HM() 0.59033 0.76455

H(2) 0.59033 0.76455
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TABLE 11

Gross atomic population for nitrosamin. ini planar geometry.

Atom Total Charge Total Charge

(Mulliken) (Lowdin)

N(1) 7.62222 7.31078

N(2) 6.71360 6.81728

0(0) 8.41915 8.29476

HM(1 0.62775 0.79472

H1(2) 0.61729 0.78245

11 i UJI1K IIIIII0 15
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TABLE 12

Comparison of dipole moments of nitramine.

Method Nitramine

CNDO (Duke 1978) 4.44

MINDO3 (Duke 1978) 3.95

INDO (Whitman and Hornback 4.12

1969)

Ab initio (Gropen et al. 1971) 4.42

Abinitio (Duke 1978) 3.75

This work

(non-planar) 3.62

This work

(planar) 4.66

Exp. 3.57
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ABSTRACT

The recent availability of artificial intelligence

programs and Lisp machines brings a completely new class

of computing tools to the physicist. In this paper we

try to provide a pedagogical introduction to this not .o

common class of computing by demonstrating some of the

general applications of these programs, by showing one

of its applications in solid state physics research, and

by suggesting other research and classroom applications.
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1. INTRODUCTION

Durtng the past decade the use of digital computers has be-

come an integral part of research in solid state physics. In

most cases the uses of computers have been primarily either for

numerical calculations or for control, data acquisition, and

data analysis in experiments. In this paper we try to point

out a different type of use, namely for algebraic (or symbolic)

manipulation. This type of computer programming is part of a

larger field which is known as artificial intelligence and is

expected to make a very large impact in the next generation of

computers.

Although a munber of researchers .in physics have used

computers for algebraic programming, it is still an unfamiliar

topic to a large fraction of physics faculty and students.

Thus in the first part of this paper we take a pedagogical

approach and introduce the use of algebraic programing via

examples. In subsequent parts we present its application to a

particular problem in solid state physics, namely the formu-

lation of band structure calculations based upon the linear

combination of atomic orbitals (LCAO) method. The examples

presented in the rest of the paper are based on the "computer

language" REDUCE. 1 The easy availability of this language
2

over the more powerful ones, like MACSYMA, was the reason for

this choice.
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II. ALGEBRAIC PROGRAMMING

The primary purpose of algebraic manipulation programs is

to process formal mathematical expressions, without any particular

concern for their numerical values. Basically these expressions

are processed in a fashion siNilar to the one used in an algebra

or calculus class. Since almost all of the readers of this paper

are familiar with numerical programing using computer languages

like BASIC or FORTRAN, we think it is most instructive to present

an example comparing the algebraic programming method with the

numerical programming method.

Example I

Let us consider the expression

(X2 _ Y2) / (X+Y). (1)

If we write a FORTRAN program as

Z = (X**2 - Y**2) / (X+Y) (2)

PRINT (5,*) Z (3)

END (4)

and execute it, the result will be completely meaningless and

some compilers will warn that the X and Y variables are "un-

defined." Running a similar program from a BASIC interpreter will

produce a similar error message. If we run a program in REDUCE as

Z = (.X**2 - Y**2) / (X+Y); (5)
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the result will be (X - Y).-

The main difference between the two types of programing is

illustrated in tbe above example. In the numerical programing

methodo one must assign a numerical value to each variable before

an expression containing it Is evaluated, whereas in algebraic

programing one obtains an answer which is true for all different

values of the variables. Since in solid state physics problems,

as well as in a number of other branches of science, one needs to

translate a physical model into mathematical expressions before

starting numerical programing,, in most of these cases the

algebraic prograiming msethod could be used to obtain those ex-

pressions. In table I we have presented a few examples using

REDUCE. On one line the operation is defined, followed by a semi-

colon. on the lines after the semicolon the results from the

execution of REDUCE are printed. -Examples of differentiation

and integration are given. The statements starting with ON or

OFF are control directives to the REDUCE program and may be

ignored during the reading of this paper without loss of under-

standing. The computer used for these examples was a DEC 2060

running with the TOPS-20 operating system, but these examples

can be run in any implementation of REDUCE yielding the same

results.
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111. LCAO BANDSTRUCTURE

In this section, as a specific application, we present the

use of REDUCE in obtaining the expressions for the 1 inear com-

bination of atomic orbitals (LCAOI Hamiltonian matrix elments

for electrons in a crystal. An introduction to the band theory

in general and the LCAO method in particular can be obtained

from many solid state physics texts.3  Also, the original paper

by Slater and Koster,4 and a review article by Nussbaum,5 con-

tain a comprehensive discussion of the theory involved. In

light of this, a detailed introduction will be omitted here.

This method has been a very effective starting point for the

study of defects,6 surfaces, the electron-phonon interaction,
8

and Fermi-surface properties.
9

In the LCAO formulation of the band structure problem, one

expresses the conduction electron wave function *nk(7) as a

linear combination of atomic orbitals (hence the name LCAO):

= mL E Cjneit.Rm m() (6)

where * (i'*) is the atomic orbital centered at site m and the

summation j runs over all the atomic orbitals considered, e.g.

orbitals of symmetry s, x, y, xy, yz, etc. The energy levels

and wave functions for the electrons are obtained by diagonal-

izing the matrix Htj. where
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Hti " Z e u ) , IHl 1# (7)

and H is the Hamiltonian, The above expression for Hi, after

a commonly-used approximation called the two center approxi-

nation4'5 can be written as

HtJ a ~l~ r~ e1r 1  E(o
p~ne)ghborsa Ptj(.np (8)

where Ifp represents the lattice sites and Ejis a unie

function of 1, J, and t p. The functional dependence of Eij on

].p can be further subdivided into radial and angular parts.

The Eij expressions for a few different values of i and J are:

ESX M ,(spa) (9)

E 2 2 = vT/2(L2-m2) sda) (10)s ,x 2.y2

E x ,3z2 2 (n2-(z2 +m2 )/2)(pda) - V/mn 2(pd ) (11)

where t, m, and n are the direction cosines of ren
,representing

the angular part, and (ssa), (ppw), etc. are two-centered bond

parameters, representing the radial part. A complete list of

the functions is given in references 4 and 5. A general

procedure, which can also be implemented using REDUCE, is

given by Sharma.
10

In evaluating Hij , the contribution from the radial part

is usually determined from numerical calculations or from a
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parametric fit, and that from the angular part is obtained by

analytically suming over the I p. As an example, we will con-

sider the contribution to Hsx for the nearest neighbors in a

body-centered cubic (bcc) lattice. The number of nearest

neighbors in this case is eight and their coordinates and

(z m n) values are listed in Table II. Substituting these

values of (z m n) and the form of Esx from equation 9 into

equation 8, one gets

HSX - 21 sin(kxa)(spa) , (12)

where a is the lattice constant. This expression Is the

contribution of the nearest neighbors in a bcc lattice to Hsx.

Although the contributions from other matrix elements, and for

different lattices can he obtained in an identical fashion, the

process is extremely tedious, error-prone, and time consuming.

Table III contains a program in REDUCE which evaluates the sum

over p , given the 4p vectors. Readers interested in getting a

feel for the advantage of using this program may try evaluating

one of the d-d matrix elements, or may look in Ref. 4 or 5 at

the complicated results for s, p, and d orbital symmetries.

Readers not familiar with the programming language REDUCE should

only be concerned with the remarkable brevity of a program

which yields the complicated LCAO expressions for arbitrary

angular momentum orbital basis functions.



IV. OTHER APPLICATIONS

Artificial intelligence programing has countless appli

cations. These applications include complicated integrations,

differentiations, limit evaluations, sumations, and application

of recursion relations to give analytic expressions. These

programs are very efficient in performing the more tedious

kinds of operations in which humans have a high rate of error.

Since most students n physics as well as the other sciences

are acquainted with personal computers and mainframe computers,

and use them in both graduate and undergraduate studies, an

introduction to artificial intelligence programming at an early

stage in the student's career is now appropriate. This can be

done in many physics classes, but certainly in courses in

mathematical methods of physics at any level.

A few other examples of useful REDUCE programs are programs

which produce explicit expressions for the following:

1) orthogonal polynomials of arbitrary order

2) spherical harmonics of arbitrary 1 and m

3) spherical Bessel functions of arbitrary order

4) Clebsch-Gordon coefficients.

A comment on the last item is informative and illustrative of the

power of REDUCE. Many man-years of effort have been expended in

computing Clebsch-Gordon coefficients of high order. Numerical

calculations are difficult because of factorial functions of

large arguments. Extensive tables of the coefficients have been
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published, both tn prime number representation and decimal

representation. Using REDUCE we have written a simple program

which very quickly gives an analytic expression for or a nu-

merical value of the coefficient for arbitrary angular momenta

without any of the computational difficulties encountered in

previous methods. 11

U
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V. CONCLUSION

We have demonstrated the utility of algebraic programming

by presenting a specific example of how it has been used in

solid state physics research. 12 The advantages of this method

are threefold, First, the tedium of deriving many expressifts

using the same method is greatly reduced. Second, a great deal

of time can be saved by using the computer to do repetitive

derivations. Finally, th~e chances of error in the derivations

and in transcription of the equiations are minimized. The latter

is due to the fact that REDUCE has the capability of writing

the results in FORTRAN.

With the recent stress on aritifical intelligence and fifth

generation computers, there is a growing need for more re-

searchers and students to become familiar with programming

languages like REDUCE. Not only are they useful, they may soon

become a necessary part of any scientific researcher's tools.

Artificial Intelligence may remove the bottleneck between the

conception of a solution to a problem and its execution, giving

the student and researcher more time to think and learn, as well

as the ability to attack problems of greater complexity.

We are convinced that in the future the use of artificial

intelligence programs will be ju'st as important a part of training

for scientists as learning how to read a voltmeter or use a

microscope.
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Table Captions

Table 1. Examples of the use of REDUCE for differentiation

and integration of selected functions.

Table 11. Nearest-neighbor positions and direction cosines for

the BCC lattice. The nearest-neighbor distances have

been multiplied by 2/a, where a is the lattice con-

stant, and the direction cosines have been multiplied

by r3.

Table III. A REDUCE program which was used for the evaluation

of Slater-Koster matrix elements.



CCI3'tThe following are examples of differentiation:

Thg syntax is DF( F , x, n),
where function F is differentiated n times with respect
to the variable x;

D(X**3 ,X ,1);

2
3*X

DFC X**N *SIN(X ,X 2);

N 2 2 2(X '(2*COS(X)*X*N - SIN(X)*X + SIN(X)*N -SIN(X)*N))/X

DF( X**(X**X) v X *3);

x
(X + X) (2*X) 6 3 (2*X) 5 3 (2*X)(x ( *LOG(X) *X + 3*X *LOG(X) *X+ 3*X

4 3 (2*X) 4 2 (2*X) 3 3LOG(X) *X + 3*X *LOG(X) *X( + X *LOG(X) *X+
(2*X) 3 2 (2*X) 2 2 (2*X)6*X *LOG(X) *X + 3*X *LOG(X) *X( + 3*X

2 (2*X) (2*X) X 5LOG(X) *X + 3*X *LOG~(X)*X + X + 3*X *LOG(X) *

3 X 4 3 X 3 3 X 3X +9*X *LOG(X) *X + 9*X *LOG(X) *X + 12*X *LOG(X) *

2 X 2 3 X 2 2 X 2X + 3*X *LOG(X) *X +21*X *LOG(X) *)X - 3*X *LOG(X) *

X 2 X X XX +9*X *LOtG(X)*X + 6*X *LOG(X)*X+ 6*X *X - 3*X +

4 43 3 3 2 3 2 2LOG(X) *X + 3*LOG(X) *X + 3*LQG(X) *X + 6*LOG(X) *X

3 2 2 3+ LOG(X)*X + 9*LOG(X)*X - 4*LOG(X)*X+ 3*X +2)/

DF( A*X *ASIN(XW X ,2);

(SQRT(X -1)*i*I*( -x + 2))/(X - 2*X + 1)



Table I (continued)

g C ' f The followtng are examples of integration.
The syntax is INT( , x)
where F is the integrand and X is the variable of
integration.;

INT( 1I/X ,X);

LOG(x)

INT( x*P LOG x );I

P 2
(X *X*(LOG(X)*P + LOG(X) - 1))/(P + 2*P + 1)

INT( SIN LOG Q , Q);

- COS(LOG(Q)) + SIN(LOG(Q))))/2

INT( A**X ,X);

A /LOG(A)

INT( A**X * SIN X , X);

X 2
(A *(LOG(A)*SIN(X) - COS(X)))/(LOG(A) 1)

INT( X * ATAN X ,X);

2
CATAN(X)*X + ATAN(X - X)/2



Table 11

BCC Lattice

Nearest-neighbor position (x 2/a) Direction cosines (xjr'

A. Z ju
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Abstract

A detailed study of Li2, Li3 and Li4 clusters is reported at the

ab initio level. Fourteen different geometries of the clusters have been

considered. The most stable geometrical forms at the Hartree-Fock-

Configuration-Interaction level are found and compared with previously

published theoretical and experimental results.
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I. Introduction

In recent years, there has been widespread interest in theoretical

investigation of metal clusters (Schaefer 1975). The understanding of the

properties of small clusters is of signal importance in many areas,

particularly dispersed metal catalysis. Lithium, as the simplest metal,

has been the subject of many of these studies (Stoll and Preuss 1972.

Narshall, Blint and Kunz 1976, Borisov 1976, Gerber and Schumacher 1978,

Hermann and Bagus 1978, Beckmann St al. 1979) primarily because simple

quantum chemical methods as well as sophisticated self-consistent-field

methods can be employed for evident reasons. As a result, a number of

results of different quality on different clusters is now available. For

example, ab initio Self-Consistent-Field (Davies and Del Conde 1976).

Configuration Interaction (Kress, Carberry and Kuczynski 1978), Coupled-

Electron-Pair-Approximation (Meyer 1977) and Diatomics-In-Holecules

(Companion, Steible and Starshak 1968) studies of Li clusters have been

published but the obtained results are hardly in agreement with each other.

In this study and the studies to follow, we want to use one method only,

namely Hartree-Fock followed by full configuration interaction in the

entire spectrum of diatomic molecule to very large clusters. The ultimate

aim is to determine precisely what size and shape of the cluster which can

be used, to a reasonable approximation, to simulate the effects of the

infinite solid. This work concentrating on small Li2. Li3 and Li4 clusters

is the first one in a series of exhaustive study of metal clusters at the

Hartree-Fock-Configuration-Interaction level. It is hoped that such a

consistent study will help resolve the controversies surrounding the size,

shape and stability of small Li clusters.

MAM &Ar IL L,,,
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II Geometry of Clusters

Clusters investigated in this work are taken from different studies

available in the literature and are shown in Fig. 1. Triangular,

equidistant and general Li3 clusters are investigated. The parameters are

taken from a comparable CDO/IBW (Complete Neglect of Differential Overlap)

study (Skala 1981) since it is known that such parameterization is able to

give the quantities of primary interest, i.e. bond lengths, bond angles and

binding energies to a fairly good accuracy (Boyd and Whitehead 1981). Of

course, it is expected that a HF followed by CI calculation will improve the

results of semiempirical studies considerably. Ten different structures of

Li4 are taken into account: tetrahedral (tot), triangular (tri), square

(sq), linear equidistant (eq), linear consisting of two diatomic molecules

(mol), general linear (lin), oblong formed by two parallel diatomic molecules

(obl), T-shaped (T), rhombic formed by two diatomic molecules (rho) and

parallelopiped (para).

III. Computational Method

One of the primary considerations involved is determination of the

type of basis set to be used. Gaussian-type basis sets used in ab initio

molecular orbital computations usually involve some compromise between

computational cost and accuracy. A considerable increase in computational

efficiency can be achieved if the exponents of the Gaussian primitives are

shared between different basis functions. At the split-valence level, this

is usually exploited by sharing primitive exponents between s and p

functions for the valence functions. Accordingly, for lithium, we have
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used here the so-called 3-21 G basis set (Binkley, Pople and Hehre 1980).

This basis consists of a-type inner shell function with 3 Gaussians, an

inner set of valence s- and p-type functions with 2 Gaussians and another

outer sp set with 1 Gaussian.

Once the basis set has been decided upon, Hartree-Fock calculations

have been carried out followed by full CI involving all single and double

excitations. The use of the method of configuration interaction is crucial

since it is well known (Das 1967) that conventional Hartree-Fock methods do

not describe Lin systems accurately. These CI calculations have been

performed within the framework of the Graphical Unitary Group Approach

(GUGA-CI) of Brooks and Schaefer (1979). It is to be noted that GUGA-CI

approach is computationally well tractable compared to conventional CI

methods.

IV. Results

The results of our calculations are presented in Tables 1 and 2. The

parameters are listed in Column 2 of Table 1. AE indicates the energy

separation between the lowest unoccupied molecular orbital and the highest

occupied molecular orbital and Etot is the total energy, i.e. the core

repulsion energy plus the valence electron energy. Eb is the binding

energy per atom given by

Eb o (NELi - ELiN )IN (1)

where N is the number of atoms in the cluster. Table 2 lists the first and

the second ionization potentials. The first ionization potential is

obtained from Koopman's theorem

I. P. - -Ehomo (2)

'Mi M151,1 1111 ZQQ Q.ZD
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and the second ionization potential was obtained from the orbital below the

highest occupied molecular orbital.

For Li2, the separation distance was taken to be the equilibrium

experimental separation. Our value for the first ionization potential 4.89

eV compares favorably with the experimental ionization potential 4.96 oV.

The difference could be attributed to the basis set. The CI was fairly

small, involving only 553 configurations, counting all single and double

excitations.

For Li 3  the conclusions agree with the results of Skala (1981) and

Kendrick and Hillier (1977) at the Hartree-Fock level. This implies that

at this ab initio level, the most stable Li3 cluster has the form of a

non-equilateral triangle. The total energy of linear equidistant Li3 is

found to be lower than that of the triangular Li3. This agrees with the

results of Skala (1981) and Companion (1978) but in contrast to the results

of Kendrick at al. (1977).

The results of the binding energy calculations indicate also that

Li3iso should be unstable. This contradicts the experimental results

of Wu (1976); however, other recent experimental works indicate that

clusters with odd number of atoms are less probable than those with even

number of atoms. The origin of this discrepancy could also be due to the

parametrization method inherent in the CNDO/BW approximation, as correctly

observed by Skala (1981).

The Li4 results are probably the most exhaustive ab initio study on

this system. The CI in these cases were fairly large, typically 11000

configurations counting all single and double excitations. At the Hartree-

Fock-Configuration-Interaction level, the binding energy increases along

the following sequence of geometries: tetrahedral, oblong, triangular,
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square, linear equidistant, molecular, T-shaped., rhombic and parallelopiped.

The CNIDO/IW study of Skala (1981) with the same parameters found the

following sequence of geometries: tetrahedral, triangular, square,

equidistant, molecular, linear, oblong, T-shaped, rhombic and

parallelopiped. Other works on Li4 usually take into account only two or

three geometries and the most stable system is that of square form (Companion

1978). There is however no contradiction, since LU4rho or Li4para

were not considered. The binding energy 2Etot (Li2) - Etot (Li4para)

is found to be 0.495 eV, to be compared with the result 0.956 eV of Skala

(1981) and 0.668 eV of Companion (1978).

Finally, the result of the dipole moment calculations show that except

for U 3iso, Li4mol, Li4T and Li4para, the dipole moment equals zero.

Since most stable Lin systems should have nonzero dipole moment, experi-

mental determination of dipole moments can help determine the cluster

geometries.

., ,. ,. -.
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Fig. 1. Geometry of two-, three-, and four- atomic clusters
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Table 1. The values of the geometrical parameters, the homo-lumo gaps AE,

the total energy Etot in a.u., the binding energy per atom Eb.in a.u.,

and the dipole moment in Debye.

Cluster R AE Etot Eb  D

L 2  2.672 0.1903 -14.7966 0.0168 0.0

Li 3tri 2.96 0.0431 -22.1654 0.0070 0.0

Li3eq 2.75 0.0938 -22.1696 0.0084 0.0

Li3is0 R-2.82 0.0674 -22.1735 0.0097 0.375

a=72.2*

Li4tet 3.01 0.1213 -29.5773 0.0128 0.0

Li4tri 3.89 0.1218 -29.5874 0.0151 0.0

Li4sq 2.84 0.1223 -29.5890 0.0158 0.0

Li4eq 2.65 0.1609 -29.5921 0.0165 0.0

Li4Mal 2.73 0.1601 -29.5937 0.0169 0.037

Li41in R-2.734 0.1617 -29.5897 0.0159 0.0

r-2.631

Li4obl 3.23 0.1221 -29.5827 0.0142 0.0

Li4T 2.70 0.1489 -29.6021 0.0190 4.72

Li4 rho 2.57 0.1716 -29.6048 0.0197 0.0

Li 4par R=R23.05 0.1648 -29.6114 0.0214 0.045

aw50.4*
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Table 2. Ionization potentials for Lin clusters

Cluster First Ionization Second Ionization

Potential Potential

Li2  0.1799 2.4258

Li3tri 0.1237 0.3633

Li 3eq 0.1591 0.3357

Li iso 0.1292 0.36193.'
U4tot 0.1127 0.2192

L4 tri  0.1435 0.2247

Li4sq  0.1380 0.2305

U4eq  0.1688 0.2070

Li 4
mol 0.1682 0.2051

L41in 0.1695 0.2063

LU4obl 0.1388 0.2284

LiT 0.1501 0.2229

L 4rho 0.1600 0.2165

Li4para 0.1563 0.2184
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